2023年黑龙江绥化中考数学试题及答案
一、单项选择题(本题共12个小题,每小题3分,共36分)请在答题卡上用2B铅笔将你的选项所对应的方框涂黑
1.下列图形中,既是轴对称图形又是中心对称图形的是( )
|
|
|
|
A | B | C | D |
2.计算
的结果是( )
A.-3 B.7 C.-4 D.6
3.如图是一个正方体,被切去一角,则其左视图是( )
|
|
|
|
|
A | B | C | D |
4.纳米是非常小的长度单位,
,把0.000000001用科学记数法表示为( )
5.下列计算中,结果正确的是( )
A.
B.
C.
D.![]()
6.将一副三角板按下图所示摆放在一组平行线内,
,
,则
的度数为( )

A.55° B.65° C.70° D.75°
7.下列命题中叙述正确的是( )
A.若方差
,则甲组数据的波动较小
B.直线外一点到这条直线的垂线段,叫做点到直线的距离
C.三角形三条中线的交点叫做三角形的内心
D.角的内部到角的两边的距离相等的点在角的平分线上
8.绥化市举办了2023年半程马拉松比赛,赛后随机抽取了部分参赛者的成绩(单位:分钟),并制作了如下的参赛者成绩组别表、扇形统计图和频数分布直方图.则下列说法正确的是( )
组别 | 参赛者成绩 |
A |
|
B |
|
C |
|
D |
|
E |
|
|
A.该组数据的样本容量是50人
B.该组数据的中位数落在90~100这一组
C.90~100这组数据的组中值是96
D.110~120这组数据对应的扇形统计图的圆心角度数为51°
9.在平面直角坐标系中,点A在y轴的正半轴上,
平行于x轴,点B,C的横坐标都是3,
,点D在
上,且其横坐标为1,若反比例函数
(
)的图象经过点B,D,则k的值是( )

A.1 B.2 C.3 D.![]()
10.某运输公司,运送一批货物,甲车每天运送货物总量的
.在甲车运送1天货物后,公司增派乙车运送货物,两车又共同运送货物
天,运完全部货物.求乙车单独运送这批货物需多少天?设乙车单独运送这批货物需x天,由题意列方程,正确的是( )
A.
B.
C.
D.![]()
11.如图,在菱形
中,
,
,动点M,N同时从A点出发,点M以每秒2个单位长度沿折线A-B-C向终点C运动;点N以每秒1个单位长度沿线段
向终点D运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x秒,
的面积为y个平方单位,则下列正确表示y与x函数关系的图象是( )

|
|
|
|
A | B | C | D |
12.如图,在正方形
中,点E为边
的中点,连接
,过点B作
于点F,连接
交
于点G,
平分
交
于点H.则下列结论中,正确的个数为( )

①
②
③当
时,![]()
A.0个 B.1个 C.2个 D.3个
二、填空题(本题共10个小题,每小题3分,共30分)请在答题卡上把你的答案写在所对应的题号后的指定区域内
13.因式分解:
_____________.
14.若式子
有意义,则x的取值范围是____________.
15.在4张完全相同的卡片上,分别标出1,2,3,4,从中随机抽取1张后,放回再混合在一起.再随机抽取一张,那么第二次抽取卡片上的数字能够整除第一次抽取卡片上的数字的概率是
16.已知一元二次方程
的两根为
与
,则
的值为____________.
17.化简:
____________.
18.如图,
的半径为2
,
为
的弦,点C为
上的一点,将
沿弦
翻折,使点C与圆心O重合,则阴影部分的面积为____________.(结果保留π与根号)

19.如图,在平面直角坐标系中,
与
的相似比为1∶2,点A是位似中心,已知点
,点
,
.则点
的坐标为____________.(结果用含a,b的式子表示)

20.如图,
是边长为6的等边三角形,点E为高
上的动点.连接
,将
绕点C顺时针旋转60°得到
.连接
,
,
,则
周长的最小值是____________.

21.在求
的值时,发现:
,
,从而得到![]()
.按此方法可解决下面问题.图(1)有1个三角形,记作
;分别连接这个三角形三边中点得到图(2),有5个三角形,记作
;再分别连接图(2)中间的小三角形三边中点得到图(3),有9个三角形,记作
;按此方法继续下去,则
_____________.(结果用含n的代数式表示)

22.已知等腰
,
,
.现将
以点B为旋转中心旋转45°,得到
,延长
交直线
于点D.则
的长度为___________.
三、解答题(本题共6个小题,共54分)
请在答题卡上把你的答案写在所对应的题号后的指定区域内
23.(7分)已知:点P是
外一点.

(1)尺规作图:如图,过点P作出
的两条切线
,
,切点分别为点E、点F.(保留作图痕迹,不要求写作法和证明)
(2)在(1)的条件下,若点D在
上(点D不与E,F两点重合),且
.求
的度数.
24.(8分)如图,直线
和
为河的两岸,且
,为了测量河两岸之间的距离,某同学在河岸
的B点测得
,从B点沿河岸
的方向走40米到达D点,测得
.

(1)求河两岸之间的距离是多少米?(结果保留根号)
(2)若从D点继续沿
的方向走
米到达P点.求
的值.
25.(9分)某校组织师生参加夏令营活动,现准备租用A、B两型客车(每种型号的客车至少租用一辆).A型车每辆租金500元,B型车每辆租金600元.若5辆A型和2辆B型车坐满后共载客310人;3辆A型和4辆B型车坐满后共载客340人.
(1)每辆A型车、B型车坐满后各载客多少人?
(2)若该校计划租用A型和B型两种客车共10辆,总租金不高于5500元,并将全校420人载至目的地.该校有几种租车方案?哪种租车方案最省钱?
(3)在这次活动中,学校除租用A、B两型客车外,又派出甲、乙两辆器材运输车.已知从学校到夏令营目的地的路程为300千米,甲车从学校出发0.5小时后,乙车才从学校出发,却比甲车早0.5小时到达目的地.下图是两车离开学校的路程s(千米)与甲车行驶的时间t(小时)之间的函数图象.根据图象信息,求甲乙两车第一次相遇后,t为何值时两车相距25千米

26.(9分)已知:四边形
为矩形,
,
,点F是
延长线上的一个动点(点F不与点C重合).连接
交
于点G.

(1)如图一,当点G为
的中点时,求证:
.
(2)如图二,过点C作
,垂足为E.连接
,设
,
.求y关于x的函数关系式.
(3)如图三,在(2)的条件下,过点B作
,交
的延长线于点M.当
时,求线段
的长.
27.(10分)如图,
为
的直径,且
,
与
为圆内的一组平行弦,弦
交
于点H.点A在
上,点B在
上,
.

(1)求证:
.
(2)求证:
.
(3)在
中,沿弦
所在的直线作劣弧
的轴对称图形,使其交直径
于点G.若
,求
的长.
28.(11分)如图,抛物线
的图象经过
,
,
三点,且一次函数
的图象经过点B.

(1)求抛物线和一次函数的解析式.
(2)点E,F为平面内两点,若以E、F、B、C为顶点的四边形是正方形,且点E在点F的左侧.这样的E,F两点是否存在?如果存在,请直接写出所有满足条件的点E的坐标:如果不存在,请说明理由.
(3)将抛物线
的图象向右平移8个单位长度得到抛物线
,此抛物线的图象与x轴交于M,N两点(M点在N点左侧).点P是抛物线
上的一个动点且在直线
下方.已知点P的横坐标为m.过点P作
于点D.求m为何值时,
有最大值,最大值是多少?
参考答案
一、单项选择题(本题共12个小题,每小题3分,共36分)
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
C | D | B | A | D | C | D | B | C | B | A | D |
二、填空题(本题共10个小题,每小题3分,共30分)
13.
14.
且
15.
16.![]()
17.
18.
19.
20.![]()
21.
22.
或![]()
三、解答题(本题共6个小题,共54分)
23.(本题7分)
解:(1)作法:如图所示

①连接
,分别以点P,O为圆心,大于
长为半径画弧,两弧交于M,N两点作直线
交
于点A. (2分)
②以点A为圆心,以
为半径画弧(或画圆)······················· (1分)
与圆O交于E,F两点.作直线
,
·························· (1分)
、
即为所求.
(2)答案略
24.答案略
25.(本题9分)
解:(1)设每辆A型车、B型车坐满后各载客x人、y人,由题意得
····································· (2分)
解得
······································ (1分)
答:每辆A型车、B型车坐满后各载客40人、55人.
(2)设租用A型车m辆,则租用B型车
辆,由题意得
解得:
······················ (1分)
∵m取正整数,
∴
,6,7,8
∴共有4种租车方案··································· (1分)
设总租金为w元,则![]()
∵![]()
∴w随着m的增大而减小
∴
时,w最小
∴租8辆A型车,2辆B型车最省钱.···························· (1分)
(3)设
,![]()
由题意可知,甲车经过
;乙车经过
,
两点.
∴
,
······························· (1分)
,即![]()
解得
······································· (1分)
或![]()
解得![]()
所以,在甲乙两车第一次相遇后,当
小时或
小时时,两车相距25千米.········· (1分)
26.(本题9分)
证明:(1)∵四边形
为矩形
∴![]()
∴![]()
∵G为
中点
∴
······································ (1分)
在
和
中
··································· (1分)
∴
······························· (1分)
(2)∵四边形
为矩形

∴![]()
∵![]()
∴![]()
∵![]()
∴
··································· (1分)
∴![]()
∵
,![]()
∴在
中,
····················· (1分)
∵![]()
∴![]()
∴
(写
也可得分)··················· (1分)
(3)过点E作
于点N

∵四边形
为矩形,且![]()
∴![]()
∵
,![]()
∴![]()
∴
为等腰直角三角形
∴![]()
∵![]()
∴
为等腰直角三角形
∴
····································· (1分)
∵![]()
∴
平分![]()
∴![]()
在
中,
∵![]()
∴
···························· (1分)
∵![]()
∴![]()
∵![]()
∴![]()
∵![]()
∴![]()
∴![]()
∴![]()
∴
∴
····································· (1分)
27.(本题10分)
证明:(1)∵
和
是
所对的圆周角
∴
··································· (1分)
∵![]()
∴
·································· (1分)
∴![]()
∴
································· (1分)
(2)连接
,交
于点F

∵
与
为一组平行弦(也可写成
)
∴![]()
∵![]()
∴
·································· (1分)
∵![]()
∴∠![]()
∴
····································· (1分)
∴![]()
∴
······································ (1分)
(3)答案略
28.(本题11分)解:(1)把
,
,
代入![]()
得
··································· (1分)
解得
······································ (1分)
∴
··································· (1分)
把
代入
得![]()
∴
······································ (1分)
(2)满足条件的E、F两点存在,
,
,
(3分)(每写对1个点的坐标得1分)
(3)∵
向右平移8个单位长度得到抛物线![]()
∴
,![]()
∵
过M,N,C三点
∴
··································· (1分)
在直线
下方的抛物线
上任取一点P,作
轴交
于点H,过点H作
轴于点G.

∵
,![]()
∴![]()
∴
是等腰直角三角形
∵
,![]()
∴![]()
又![]()
∴
是等腰直角三角形
∴![]()
∵点P在抛物线
上,且横坐标为m
<p<img height="18" src="//img.985ks.com/m_images/img_default_show.png" data-echo="//img.985ks.com/uploadfile/images/2023/0628/16879679503882093.png" width="9<p<p
∴
····································· (1分)
∵![]()
∴![]()
∴![]()
∴
···················· (1分)
∴

∴当
时,
的最大值为
······················ (1分)
(第28题,第2问详解,以下题解仅供阅卷参考)
解:①当
为正方形的边长时,分别过B点C点作
,
,使
,
,连接
、![]()

过点
作
轴于
.
![]()
,![]()
∴![]()
同理可得,![]()
②以
为正方形的对角线时,过
的中点G作
,使
与
互相平分且相等,则四边形
为正方形.
过点
作
轴于点N,过点B作
于点M

则![]()
∴
,![]()
∵![]()
∴![]()
∴![]()
在
中,![]()
∴![]()
解得
或4
当
时,
,此时点E在点F右侧故舍去;
当
时,
.
综上所述:
,
,![]()



